SEMESTER 9

PROFESSIONAL ENGINEERING MODULES

PROGRAMME
2020-2021
<table>
<thead>
<tr>
<th>Profession</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingénieur Éco-Conception et Innovation</td>
<td>6</td>
</tr>
<tr>
<td>Advanced design processes</td>
<td>7</td>
</tr>
<tr>
<td>Design and technology choices</td>
<td>9</td>
</tr>
<tr>
<td>First Design of Innovative Products</td>
<td>10</td>
</tr>
<tr>
<td>Modern design tools</td>
<td>8</td>
</tr>
<tr>
<td>Ingénieur Consultant</td>
<td>12</td>
</tr>
<tr>
<td>Become a Consultant.</td>
<td>15</td>
</tr>
<tr>
<td>Consulting Project Management</td>
<td>14</td>
</tr>
<tr>
<td>The fundamentals</td>
<td>13</td>
</tr>
<tr>
<td>Ingénieur en Excellence Organisationnelle (Lean Supply Chain)</td>
<td>16</td>
</tr>
<tr>
<td>Base du Management des Opérations</td>
<td>17</td>
</tr>
<tr>
<td>Basiques de la SC : Prévisions, MRP, Achats, SI</td>
<td>19</td>
</tr>
<tr>
<td>Lean Management</td>
<td>18</td>
</tr>
<tr>
<td>Logistique physique</td>
<td>20</td>
</tr>
<tr>
<td>Participation</td>
<td>22</td>
</tr>
<tr>
<td>Projet Intégratif</td>
<td>21</td>
</tr>
<tr>
<td>Ingénieur Management des risques industriels et environnementaux</td>
<td>23</td>
</tr>
<tr>
<td>Ingénieur Recherche Innovation et Développement</td>
<td>28</td>
</tr>
<tr>
<td>Innovative Design and Creativity</td>
<td>30</td>
</tr>
<tr>
<td>Philosophy, Sciences and Society</td>
<td>31</td>
</tr>
<tr>
<td>Research-Project Management</td>
<td>29</td>
</tr>
<tr>
<td>Ingénieur Startup & Business Developer</td>
<td>32</td>
</tr>
<tr>
<td>Business creation project</td>
<td>38</td>
</tr>
<tr>
<td>Business model</td>
<td>34</td>
</tr>
<tr>
<td>Design Thinking</td>
<td>33</td>
</tr>
<tr>
<td>Finance</td>
<td>36</td>
</tr>
<tr>
<td>Markets and stakeholders</td>
<td>35</td>
</tr>
<tr>
<td>Negotiation and communication</td>
<td>37</td>
</tr>
</tbody>
</table>
Business intelligence and industrial property .. 43
Business Law .. 44
Engineering Systems .. 40
Environmental Hazards ... 46
Industrial Enterprises management ... 42
Quality Management .. 41
SEMESTER 9 AT THE ECOLE CENTRALE DE LYON

In S9, students follow:
- the *UE métier* (September-November)
- the *UE secteur* (January-March)
- the *UE Module « ouvert »* (October-December)
- the *UE langue*.

The UE métier (professions teaching unit)

The MSM (92h +30h project)

Students choose from one engineer profession among the 6 following:
- **ICO** - *Ingénieur Eco-Conception et Innovation* (Eco-Design and Innovation)
- **ICS** - *Ingénieur Consultant* (Consulting)
- **IEO** - *Ingénieur en Excellence Organisationnelle* (Organizational Excellence and Lean Supply Chain)
- **IMR** - *Ingénieur Management des risques industriels et environnementaux* (Technological and Environmental Risks Management)
- **IRD** - *Ingénieur Recherche Innovation et Développement* (Research and Development)
- **ISBD** - *Ingénieur Startup et Business Developer* (Startup and Business Developer)

The score of MSM is calculated from the weighted averages of the training actions followed in each module.

The MOM (28h)

In addition to this specialisation, students choose two training actions from seven *modules ouverts métiers* (MOM - professional fields of application):

<table>
<thead>
<tr>
<th>Slot 1</th>
<th>Fridays 8:00-10:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOM 1.1</td>
<td>Engineering Systems</td>
</tr>
<tr>
<td>MOM 2.1</td>
<td>Industrial Enterprises management</td>
</tr>
<tr>
<td>MOM 3.1</td>
<td>Business Law</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot 2</th>
<th>Fridays 10:15-12:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOM 1.2</td>
<td>Quality Management</td>
</tr>
<tr>
<td>MOM 2.2</td>
<td>Business intelligence and industrial property</td>
</tr>
<tr>
<td>MOM 3.2</td>
<td>Human resources and organisation management</td>
</tr>
<tr>
<td>MOM 4.2</td>
<td>Environmental Hazards</td>
</tr>
</tbody>
</table>

The score of the MOM is equal to the average of the two MOM scores.

Assessment of the UE métier

The UE rating is the weighted sum of the MSM (80%) and MOM (20%). The UE is validated if the UE average is higher than 10 and if the score of each training action within each module is higher than 10.
Professions (MSM) 2020-2021
Introduction
The design of products corresponds to the synergy of three complementary scientific fields:
- the organizational sciences associated with concepts and the implementation of a systemic approach,
- engineering sciences associated with models describing the behavior of matter in a wide disciplinary field,
- the mathematical sciences associated with analysis and optimization tools.
These three fields of science are taught in engineering schools like the ECL and the educational objective of the "métier" is to present the students their articulation and their implementation in an industrial context. In line with the evolution of the design profession, the product-process link will be presented in the context of two sectors integrating the three science Engineering covering all hardware products: Civil Engineering, Mechanical Engineering and Electrical Engineering. The major societal issues are tackled, namely, ecology by introducing the notions of recyclability and gray energy, and innovation by presenting the strategies capable of ensuring the success of new products.

Departments/Laboratories
MSGMGC/LTDS

Programme
ICo msm 3.1 - Advanced Design Processes
ICo msm 3.2 - Modern design tools
ICo msm 3.3 - Design and technological choices
ICo msm 3.4 - ICo Project
ICo msm 3.5 - Conferences

Learning Outcomes
◊ Knowledge of engineering systems and consideration of modern digital mock-up and co-design
◊ Ability to integrate ecological constraints in the design of innovative products
◊ Multiphysical approach of the products
◊ Initiation to industrial design.
◊ Apply creative methods in the pre-project phase

Employment Sectors
The design business covers a very wide range of activities in design offices. In addition, the concepts highlighted in the lessons are essential for introducing innovation into projects, mastering product quality and end-of-life recyclability. The industrial sector involved is very large, encompassing Civil Engineering, Transportation, Energy Production and Health.

Assessment
Each msm gives rise to a note.
Objectives

To provide future designers with a panel of industrial methods of shape optimization for mechanical parts under dynamic criteria. Awareness of sustainable development issues and the ecodesign approach. The purpose of setting the context is to re-anchor the student engineer in a societal reality. From examples to integrate concepts and put them into practice. Through creative exercises, learn to develop the ability to project to future scenarios.

Keywords: Optimization, Meta-Heuristics, Meta-models, Uncertainties, Iso-geometry; Eco-design, circular economy, environmental and social impacts, multi-criteria analysis, sustainable development objective (SDG), sustainable development, SAR

Programme

Robust approaches to shape optimization of mechanical parts.
From the planet to products:
- Approach to sustainable development, corporate social responsibility.
- Limits of resources.
- Eco-systemic services, biomimicry.
- The challenge of sustainable development, the social responsibility of organizations, the environmental, social and societal dimension.
- The stakes of eco-design in your design strategy.
- Sustainable development, environmental impacts, eco-design, life cycle ...
- Define the functional unit base of any Life Cycle Analysis (LCA).
- Methodology of eco-design and implementation of an industrial project.

Learning Outcomes

◊ To know the industrial approaches of optimization of form for mechanical parts under dynamic criteria.
◊ Being able to integrate environmental and social criteria into the design process.
◊ Understanding of social, environmental, planetary and local issues.
◊ Create new paradigms, innovate, question the existing.

Autonomous Work

Objectifs : As a result of the course understand a recent article exposing a breakthrough in the methods presented. Implement the content.
Méthodes : By group read, analyze, synthesize a recent article exposing an advance in the methods presented in class. Creativity tools: methods of distance, reconciliation, projection ... Search and analysis of documents.

Core Texts

Assessment

Evaluation of the summary of the article.
Objectives

Show what digital simulation is for and why is it becoming more important. Remove the reflex: just use the tool. How to check a model and validate a result.

Keywords: Finite elements, virtual and augmented reality, numerical simulation.

Learning Outcomes

◊ Make engineers able to analyze the physical behavior of structures and manufacturing processes.
◊ Transform school knowledge into useful knowledge for the industrialist.

Core Texts

Assessment

A dozen questions half of which are in the form of multiple choice questions.
Objectives

This course deals with the implementation and expertise of numerical and experimental methods applied to the implementation and optimization of control strategies for the stabilization and isolation of dynamic systems. The sector courses (Civil Engineering or Electro-mechanics) given by specialists in the field allow to deepen knowledge in these fields.

Keywords: Structural dynamics, vibration control, vibratory isolation, smart structures, piezoelectric, shape memory alloy, MEMS. Civil engineering, Electro-mechanical engineering, Electronics

Learning Outcomes

- Modeling of coupled multiphysics systems.
- Development of an appropriate formulation for the analysis and optimization of the control problem.
- Discretized system control: LQG, DVF, IFF, Active Isolation.

Core Texts

Assessment

MCQ
First Design of Innovative Products

Lecturer(s): Louis JEZEQUEL

| Lectures: 0 h | PC: 8 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Imagine innovative products using a process of "Design thinking" and check their feasibility in a pre-design phase. Lay the foundations of a business model with an entrepreneurial vision.

Keywords: Innovation, design, entrepreneurship

Programme
- Creative session for the definition of innovative products
- Competition analysis
- Functional analysis
- Pre-conception
- Construction of a business model

Assessment
Defense
AF ICo 3.5

Conférences

Lecturer(s) : Olivier Dessombz

| Lectures: 0 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Present by actors of the industrial world the application of the methods and concepts taught to concrete cases.

Keywords: eco-design

Programme

- Eco-design and digital simulation
- Architecture and engineering
Introduction

Departments/Laboratories
CLES

Programme

Learning Outcomes

Employment Sectors

Requirements

Assessment
AF ICs 3.01

Les Fondamentaux

THE FUNDAMENTALS

Lecturer(s):

| Lectures: 4 h | PC: 19 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Keywords:
AF ICs 3.02

Gestion de projet, techniques financières et techniques de communication

CONSULTING PROJECT MANAGEMENT

Lecturer(s):

| Lectures: 6 h | PC: 27 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |
Devenir Consultant

BECOME A CONSULTANT.

Lecturer(s):

| Lectures: 22 h | PC: 12 h | PW: 0 h | Autonomy: 0 h | Study: 8 h | Project: 0 h | Language: |
Introduction
Train engineers capable of organizing, of improving and of piloting systems of production or Supply Chain, with an objective of performance and the customer satisfaction by the control of the quality, the costs and the deadlines.

The objective of this training is to develop the capacities of the student in:
- Understand the strategic stakes in Supply Chain and in organizations
- Understand the physical flows, the flows of information, as well as the financial flows
- Analyze, understand and reorganize a process of production or of supply chain
- Acquire the techniques of management of Supply Chain and quality in production.
- Get acquainted with them Informations systems (APS, ERP, WMS, ...)
- Accompany actions of improvement and continuous progress in every types of activities of valuable production

Departments/Laboratories
CLES

Learning Outcomes
◊ organize and implement supply chain and production process
◊ guarantee the efficiency (customer answer) and the efficiency of a process or an organization
◊ Manage and motivate collaborators' team to return the successful organization
◊ Pilot the continuous improvement of a processus or an organization

Employment Sectors
Continuous improvement manager, Supply Chain Manager, Engineer or Manager of Methods, Production Manager, Engineer or Quality controller, Engineer R/D, logistic project manager, supplying Manager, purchasing manager, planning and sequencing (order to pay) manager, project manager, Logistic consultant or Organization and Management consultant
AF IEO msm 3.1

Base du Management des Opérations

BASE DU MANAGEMENT DES OPÉRATIONS

Lecturer(s) : J.P. Piacentino

| Lectures: 20 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 10 h | Project: 0 h | Language: |

Objectives

Keywords:
AF IEO msm 3.2

Lean Management

LEAN MANAGEMENT

Lecturer(s) : J.P. Piacentino

| Lectures: 12 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 12 h | Project: 0 h | Language: |

Objectives

Keywords:
Basiques de la SC : Prévisions, MRP, Achats, SI
BASIQUES DE LA SC : PRÉVISIONS, MRP, ACHATS, SI

Lecturer(s) : J.P. Piacentino
| Lectures: 12 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 16 h | Project: 0 h | Language: |

Objectives

Keywords:
AF IEO msm 3.4

Logistique physique

LOGISTIQUE PHYSIQUE

Lecturer(s) : J.P. Piacentino

| Lectures: 5 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 5 h | Project: 0 h | Language: |

Objectives

Keywords:
AF IEO msm 3.5

Projet Intégratif

PROJET INTÉGRATIF

Lecturer(s) : J.P. Piacentino

| Lectures: 30 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Keywords:
Lecturer(s) : J.P. Piacentino

| Lectures: 0 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Keywords:
Introduction

Departments/Laboratories
MFAE / LMFA

Programme

Learning Outcomes

Employment Sectors

Requirements

Assessment
AF IMR 3.1

Les Impact sur l’homme, l’environnement et la santé

Lecturer(s) : Pietro SALIZZONI, Lionel SOULHAC, Béatrice FERVERS

| Lectures: 24 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: ⓢ ⓣ |

Objectives

Keywords:
AF IMR 3.2

Evaluation et quantification des Risques

Lecturer(s) : Pietro SALIZZONI, Philippe POLOMÉ

| Lectures: 26 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 16 h | Project: 0 h | Language: Ⓞ ImageIcon |

Objectives

Keywords:
AF IMR 3.3

Gestion, prévention et mitigation des risques

Lecturer(s) : M. MICHALLET, F. MARTINEZ

Lectures: 26 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Keywords:
Lecturer(s): Béatrice FERVERS

| Lectures: 0 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 50 h | Language: ▶️ | ▶️ |

Objectives

Keywords:
Introduction
The aim is to make students familiar with the specificities of the role of an engineer in Research, Innovation and Development. This is addressed in connection with present challenges such as the management of energy and water resources, big data in the general context of internationalization. Students are placed in a research-project management situation (groups of 6) are attend lectures and conferences on national and international structures that ensure research funding. They also have to simulate a project construction to answer a European-project call. Specific lectures include Innovation, Creativity, Project management and Philosophy, organized in three specific modules. The IRD 3.1 and IRD 3.2 are the core of the course. The IRD 3.3 can be replaced by any Master-degree course (equivalence).

Departments/Laboratories
MFAE

Programme
IRD 3.1 Research-project management
IRD 3.2 Innovation and Creativity
IRD 3.3 Series of conferences and Philosophy (can be replaced by a master-degree course).

Learning Outcomes
◊ Formulate a R&D problem
◊ Be able to prove creativity in searching a solution
◊ Apply the dynamics of research in the context of structures supporting research
◊ Be able to express a personal thought about the social consequences of innovation

Employment Sectors
Any research-and-development team in large industrial groups or SME, positions in public research centers (CNRS, INRETS, INSERM...) or universities.

Requirements
The only pre-requisite is the MOM 2.2 about Economic Intelligence and Data Protection

Assessment
IRD 3.1 40%, IRD 3.2 30%, IRD 3.3 / master course : 30%
AF IRD 3.1

Gestion du Projet de recherche et Interdisciplinarité

RESEARCH-PROJECT MANAGEMENT

Lecturer(s) : Mathieu CREYSSELS

| Lectures: 10 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 21 h | Project: 0 h | Language: |

Objectives

The course is aimed at familiarizing students with specific issues in research project management such as the Go/No Go. It includes lectures and a short-term research project on a subject needing a true innovative approach. The context of the project is as far as possible multidisciplinary and a quantified solution is required.

Keywords: Innovation, multidisciplinarity

Programme

Lectures on specificities of the R&D projects, Project work by groups of 5/6, for about 30 hours personal work and 12 hours with permanent staff (or external partner). The results are presented during a one-day workshop.

Learning Outcomes

- Be able to manage a research project
- Be able to apply an innovation/creativity strategy
- Bring quantified answers to problems (technical and financial)
- Be able to valorize a research project

Autonomous Work

Objectifs : R&D projects,

Méthodes : Alternating work sessions in autonomy and in the presence of an expert.

Assessment

Report and oral presentation of project results (70%), individual short questionnaire (1h,30%)
AF IRD 3.2

Creativité, ergonomie, design, innovation, compétitivité

INNOVATIVE DESIGN AND CREATIVITY

Lecturer(s) : Damien CONSTANT, Michel ROGER

| Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 11 h | Project: 0 h | Language: |

Objectives

The mechanisms of innovation in companies is exposed, in connection with the role of research and development and associated topics (business plan...).

Creativity techniques (TRIZ method) are also presented and students have to make fast applications, focused on the design of technical things.

Keywords: Innovation, design, TRIZ method

Programme

Part 1 (innovation): competitiveness of companies, methodology to establish a targeted research.
Part 2 (creativity): concepts and tools of the TRIZ method, industrial design.

Learning Outcomes

◊ Model a problem in a technical system: contradictions...
◊ Propose innovative solutions based on TRIZ method
◊ Analyze a proposed design
◊ Build a business plan from a short problem statement

Autonomous Work

Objectifs : Assess students’ ability to give fast answers in a project environment
Méthodes : Short-term project including a business plan (groups of 3 students) and oral presentation.

Core Texts

Assessment

Presentation of short-term project (innovation)
Individual test (creativity)
Objectives

Keywords:

Core Texts

FEENBERG. *Questioning technology.* Routledge, 1999.
Introduction
The program concern all students willing to create value by designing a new business, either as an entrepreneur developing her/his own startup, or as a business developer enlarging an existing company’s activities portfolio.
The program relies on three main methodologies: design thinking, project management and lean startup.
The course is organized with 2 tracks: startup creation and business development, each track with specific courses.

Departments/Laboratories
CLES

Programme
Design Thinking : 20 h
Business model : 18 h
Markets and stakeholders : 18 h
Finance : 18 h
Negotiation and communication : 18 h
Business Creation Project (BCP) : 30 h

Learning Outcomes
◊ Be able to design disrupting products, services or systems embedded in social and economical reality
◊ Be able to manage an innovative project including financial reports
◊ Be able to lead teams
◊ Be able to negotiate with customers and pitch with VC
◊ Be able to collect and interpret relevant data to consolidate the project

Employment Sectors
Entrepreneurs, Business Developer, Innovation Manager, Manager of a Business Unit, Key Account manager, Product manager, Project manager, Consultant in Strategy, Marketing or Innovation Management

Requirements
none

Assessment
BCP’s business plan and pitch
Objective

The program understands innovation and its management by a global, multidisciplinary approach linking the analytical thought and the intuitive thought. Design thinking methodology implements a process of creativity involving user’s feedbacks and usages. Students will learn how to place a problem in a global context (economic, technical, sociological ...) and how to transform an idea into a business.

Keywords: Creativity, design, codesign, usages

Programme

- What is design thinking
 - The way of developing new ideas
- How to analyse ideas in a global context within economical, sociological, technological frameworks
 - The way to transform new ideas into business

Learning Outcomes

- Be able to get an overview on a specific problem
- Be able to work with a global and transversal approach
- Develop one’s creativity

Autonomous Work

- Objectifs: Presentation of disruptive ideas
- Méthodes: Group work on specifications

Core Texts

Assessment

- Business creation project
Objectives

Define how to transform an idea into value creation.
Identify which offer is going to bring to customers a value for which they will be ready to pay.
Think how to organize the processes and the partners allowing to produce the offer
Analyse how income can balance costs.

Keywords: business model canvas

Programme
Business model definition
How to use business model canvas to innovate
How to use business model canvas to manage the value creation process

Learning Outcomes
◇ Design an value proposition adapted to targeted customers
◇ Build the customers relationship
◇ Forecast revenues
◇ Organize the overall supply chain process

Autonomous Work
Objectifs : Design the activity’s business model
Méthodes : Work in group

Core Texts

Assessment
Business creation project
Marchés et Réseau d’acteurs

MARKETS AND STAKEHOLDERS

Lecturer(s): Marie GOYON

| Lectures: 3 h | PC: 17 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: |

Objectives

Identify the actors of the ecosystem and their interactions
Understand the dynamics and the structure of relevant markets
Understand which are the levers
Understand stakeholders' strategies
Identify relevant support for the project's success

Keywords: Marketing, competitive advantage, stakeholders

Programme

Stakeholders' network: how to identify the ecosystem stakeholders and their interactions;
how build a useful network
understand the market: customers, competitors, competitive advantage and marketing strategy
Manage the activity creation process: strategic vision, leadership and project management

Learning Outcomes

◊ Market study
◊ Marketing strategy
◊ Capacity to leverage the right ecosystem's elements

Autonomous Work

Objectifs : Propose a useful map of the ecosystem
Méthodes : Group work

Core Texts

RACHEL VANIER. **Ecosystème.** Intervalles, 2017.

Assessment

Report on Business Creation project
Reporting financier

FINANCE

Lecturer(s) : Sylvie MIRA BONNARDEL

Lectures: 3 h | PC: 17 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language:

Objectives

Understand the financial reporting of business creation or startup
Know how to report financial forecast in the business plan
Know how to present credible financial scenarios

Keywords: Profit and loss statement, cashflow statement, financial forecasts

Programme

Financial aspects of business and startup creation
Financial statements
Evaluation of profit, ROCE and ROE
Cost management

Learning Outcomes

◊ State financial forecasts for a business development
◊ Evaluate return on investment
◊ Evaluate financial risks

Autonomous Work

Objectifs : State financial forecast for a business or startup development
Méthodes : Group work

Core Texts

Assessment

Report on the business / startup creation
Objectives

Learn negotiation methods to persuade a customer to buy.
Learn negotiation methods to convince an investor to finance the project.
Learn how to pitch i.e. to present the project and convince of its potential within a very short period of time (1 to 10 minutes).

Keywords: Negotiation, communication, pitch

Programme

- Communication methods
- Commercial negotiation methods
- Financial communication methods
- Pitch

Learning Outcomes

◊ Negotiation
◊ Communication
◊ Pitch

Autonomous Work

Objectifs : Work on the presentation of the business creation project
Méthodes : Group work

Core Texts

Assessment

Business creation project presentation
Projet de création d’activité

BUSINESS CREATION PROJECT

Lecturer(s) : Marie GOYON

| Lectures: 3 h | PC: 17 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language: | Language: |

Objectives

Develop one’s creativity and use it to create a new business or a startup
Develop capacities to manage a business development project
Learn to collect data relevant to manage the project
Identify and organize relevant resources to manage the project
Learn how to communicate with partners, customers or VCs

Keywords: Project management, business development, business plan

Programme

The students chose to act as business developer for a company or as an entrepreneur. They are asked to lead the project for the creation of a new and innovative activity either for a sponsoring company, or for the creation of their own start-up. The project begins with the ideation and ends in the pitch in front of investors’ jury or in front of sponsoring company

Learning Outcomes

◊ Be able to transform disrupting ideas into business opportunities
◊ Be able to evaluate the business potential
◊ Be able to combine sociological, economical technological data
◊ Be able to present a sustainable business model

Autonomous Work

Objectifs : Learn how to develop an innovative business within a company or to create one’s own startup
Méthodes : Group work

Core Texts

Assessment

Report and pitch
PROFESSIONAL FIELDS OF APPLICATION (MOM) 2020-2021
AF MOM 1.1

Systèmes d'ingénierie

ENGINEERING SYSTEMS

Lecturer(s): Patrick SERRAFERO

Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language

Objectives

Keywords:
Management de la qualité

QUALITY MANAGEMENT

Lecturer(s): Pierre Bourgeoisat

| Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy : 0 h | Study: 0 h | Project : 0 h | Language |

Objectives

Understand the challenges of quality in the company.
Integrate the process of quality and/or continuous progress in the professional curriculum.
Develop the basis of methods and tools used in the field of quality, to facilitate: their choice, their appropriation or the development of their use.

Keywords: Management, Quality, Quality management, Quality assurance, process, quality system, quality Policy, pro-blem solving, continuous improvment, SPC, stastistic process control, 5S

Programme

History, concepts and vocabulary. Quality in business
Management and costs of quality and costs of non-quality
ISO 9000 and 14000 standards-certifying bodies and accreditators
Deploying a quality approach in a company's strategy
Internal and external quality audit.
Quality improvement, problem solving, introduction to lean management
Performance indicators (KPI’s)
Standard tools (5S, 5 why, brainstorming, etc.)
Specific tools (AMDEC, experience plan, etc.)
Statistical tools (SPC)
Example of specific tools: value analysis

Learning Outcomes

◊ Improve all the processes
◊ Integrate Quality approach with the quotid y
◊ Understand the challenges of quality in business

Core Texts

AF MOM 2.1

Management de l'entreprise industrielle

INDUSTRIAL ENTERPRISES MANAGEMENT

Lecturer(s): Pierre BOURGOISAT

| Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy : 0 h | Study: 0 h | Project : 0 h | Language

Objectives

Discover the models of industrial companies and their evolution
Understand industrial organizations, their issues and their aspects: operational, managerial and human. Discover production management: the value chain, the associated support functions.

Keywords: Industry, production, operations management, management, quality, organization, value chain, value added and non value added, support functions, ERP, planning, forecasting, MRP, supply chain, stocks, push and pull system, flows, information system

Programme

Organizations and structures
Management of the company
Supply chain:
- Purchasing (stakes and organisation)
- Forecasts (demand, market)
- Planning (MRP, articles, needs)
- Stock management (utility and limits)
- Workshop management (necessity and productivity issues)
Company documents (ranges, nomenclature, quality, procedures, etc.)

Quality and process improvement

Learning Outcomes

◊ Understand the industrial organizations in which the student will work.
◊ Identify the role of each function in a company
◊ Be in the value chain of the company

Core Texts

Alain Courtois, Maurice Pillet, Chantal Martin Bon. *Gestion de production*. Eyrolles.

Intelligence économique et propriété industrielle

BUSINESS INTELLIGENCE AND INDUSTRIAL PROPERTY

Lecturer(s): Sylvie MIRA BONNARDEL

| Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy: 0 h | Study: 0 h | Project: 0 h | Language FR |

Objectives

Understand how to collect, handle, spread the relevant information with business intelligence and how to protect knowledge and know how. Understand the mechanisms of the industrial property (patent, marks, models and copyright)

Keywords: Strategic intelligence, intellectual and industrial property

Programme

- Intellectual property
- Strategic intelligence
- Information systems security
- Software law

Learning Outcomes

- Know how to protect intellectual property
- Understand what is on stake with information protection
- Understand how to identify weak signals

Core Texts

- Lorho T. Professeur caméléon - De la DGSE à l'intelligence économique. FAYARD, 2015.

Assessment

Case study
Objectives

Understand the basics of business law

Keywords: Business law, social law

Programme

| Business law |
| Tax law |
| Social law |

Learning Outcomes

◊ Understand the company's legal context
◊ Understand basic concepts of business law
◊ Be able to spot the legal points in a business contract

Core Texts

Assessment

Case study
Management des ressources humaines et des organisations

Lecturer(s): Philippe THIMONIER

| Lectures: 14 h | PC: 0 h | PW: 0 h | Autonomy : 0 h | Study: 0 h | Project : 0 h | Language | |

Objectives

Understand the key issues of human resource management within organizations
Knowledge of key human resource management processes
Understanding the basic skills of team management

Keywords: Management, Motivation, Performance, Recruitment, Training, Evaluation, Mobility, GPEC, Remuneration, Social Dialogue, Change, Psychosocial Risks

Programme

Human resources management: principle of shared responsibility:
 The strategic dimension
 The management dimension: the major processes of human resources management
 The hierarchical dimension: basic skills to manage a team
 Two special cases:
 Support for change
 Psychosocial risk

Learning Outcomes

◊ Understand the importance of the human dimension in the success of a project
◊ Know the different human resource management processes and be able to analyze their impact on motivation and performance
◊ Implement the basic skills of a team leader: listening, communicating, delegating, reporting, evaluating...
◊ Identify the main psycho-social risks

Core Texts

ELINE NICOLAS. GESTION DES RESSOURCES HUMAINES. Dunod, 2014.

Assessment

Test (Multiple choice questions+case study) + active participation (10%)
Objectives

Between 1994 and 2013 natural disasters such as flooding, drought, hurricanes, tsunamis, earthquakes and volcanic eruptions claimed more than 600 000 lives, affected the lives of more than 3 billion people and caused economic losses exceeding $2 billion. Extreme natural events are often at the origin of technological disasters, as, for example, in the case of the tsunami which led to the failure of the nuclear plant at Fukushima. And climate change is likely to increase both the frequency and the intensity of extreme events.

The aim of this course is to present the main classes of natural hazards, together with the appropriate methods of prevention, prediction and protection, where these exist.

Keywords: Natural hazards, risk, catastrophe, prevention, safety, tectonics, earthquake, volcano, tsunami, landslide, lahar, avalanche, flooding, dam, hurricane

Programme

- Definition of risk
- Types of hazard, their geographic distribution, their consequences – notions of frequency, intensity and vulnerability
- Natural hazards
- Tectonic hazards (volcanoes, earthquakes, landslides, avalanches...)
- Meteorological and hydrological hazards (storms, hurricanes, flooding, tsunamis, dam collapse...)

Technological risks, and the different techniques used to model and evaluate risk are presented in the Modules Spécifiques of the Métier Ingénieur Management des Risques Industriels et Environnementaux.

This course is a module of the Master Risques et Environnement.

Learning Outcomes

- At the end of this course, the student should be able to identify the different natural hazards to which a site is exposed
- Students should be aware of the orders of magnitude associated with different events
- At the end of this course, the student should be aware of the main principles and components of French legislation concerning natural and technological risks
- At the end of this course, the student should be able to define the main components of a Plan de Prévention des Risques

Core Texts

Assessment

Knowledge (70%) Multiple choice exam on course material, Skills (30%) Literature review on some aspect of the course
L’École Centrale de Lyon est une École du groupe des Écoles Centrale.