MASTER AEROSPACE ENGINEERING

OBJECTIVES
- To train future technical leaders and researchers to different aspects of the aerospace industry, from major constructors to component suppliers.
- To make students aware of the codes, languages and common practices of the industry.
- To develop international/intercultural skills.
- To provide initial training in continuous optimization of components, taking into account manufacturing and maintainability constraints.

SCIENTIFIC FIELDS
- Fluid Mechanics and Energy.
- Solid and Structural Mechanics.
- Materials.
- Control Engineering.

PREREQUISITES
- First degree in an appropriate Engineering discipline or in Applied Physics.
- Certified B1 level in English (CEFRL).

Plus d'infos : www.ec-lyon.fr/en/academics
COURSE PROGRAMME

Two options:

PAS : Aerospace Propulsion

AS : Aerostructures

<table>
<thead>
<tr>
<th>S1 PAS & DDC</th>
<th>Language (French)</th>
<th>Advanced design project</th>
<th>Lean management</th>
<th>Innovation management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of compressible and viscous flow analysis, Mechanics of solids, materials and structures, Numerical simulations for solid and fluid mechanics, Experimental techniques for solid and fluid mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2 DDC

<table>
<thead>
<tr>
<th>Language (French)</th>
<th>Advanced research project</th>
<th>Intercultural studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotors dynamics in mechanical engineering, Introduction to random vibration, Interactive design and FabLab practices or/ Observation and analysis of materials, Selection of materials, Intelligent mechatronic systems or/ Polymer materials: physical properties and innovation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2 PAS

<table>
<thead>
<tr>
<th>Language (French)</th>
<th>Advanced research project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical methods for mechanics, Interactive design and FabLab practices or/ Observation and analysis of materials, Adaptive filtering: application to active noise control or/ Space physics and solar-terrestrial coupling, Aircraft turbojets, Optimal design and computational fluid dynamics</td>
<td></td>
</tr>
</tbody>
</table>

S3 PAS

<table>
<thead>
<tr>
<th>Aero-thermodynamics of turbomachinery</th>
<th>Aircraft predesign project</th>
<th>Propulsion design project</th>
<th>2 elective courses in a short list of 8 choices *</th>
<th>3 elective courses in a list of 24 choices *</th>
</tr>
</thead>
</table>

S3 DDC

<table>
<thead>
<tr>
<th>P3 project: Process, product and performances</th>
<th>Materials and structures *</th>
<th>Fluid-structure interactions</th>
<th>Structural health monitoring</th>
<th>Noise (transportation & vibration control)*</th>
<th>Language</th>
<th>Mathematical analysis and numerics</th>
</tr>
</thead>
</table>

S4 PAS & DDC

Master Thesis research project (5 to 6 months)

STRATEGIC AXES / SOCIAL CHALLENGES

- Science and Engineering for a sustainable society.
- Aeronautics and Space.
- Increasing the competitiveness of the industrial economy through innovation and entrepreneurship.

MAIN OPPORTUNITIES

After graduation, some two-thirds of students find jobs in industrial companies, subcontractors or design firms specialising in the sector. The other third continue with a doctorate at a research laboratory or in partnership with an industrial manufacturer.

CONTACT

- **Pr. Stéphane AUBERT | M1 + M2 PAS path**
 Program manager
 stephane.aubert@ec-lyon.fr

- **Pr. Mohamed Ichchou | M2 AS path**
 Program manager
 stephane.aubert@ec-lyon.fr